ALGEBRA E GEOMETRIA ( cod. 18728)
Insegnamento di INFORMATICA (Corsi di Laurea)
Facoltà di Corsi di Laurea triennale (D.M. 270/04)
TIPOLOGIA DELL'INSEGNAMENTO: ATTIVITÀ FORMATIVE DI BASE
Lingua Insegnamento:
Italiano
FREQUENZA FACOLTATIVA
Obiettivi
L'algebra lineare ha legami con molti rami della matematica:algebra astratta, equazioni differenziali, geometria, statistica.
L'obiettivo del corso è quello di dare allo studente basi per potere affrontare e risolvere vari problemi.
Prerequisiti
Nessuno
Contenuti dell'insegnamento
Elementi di logica, teoria degli insiemi, relazioni, funzioni Strutture algebriche: semigruppi, monoidi, gruppi, anelli, campi.Prime prprietà dei numeri interi, numeri irriducibili, primi, algoritmo della divisione euclidea; congruenze e loro proprietà; Piccolo Teorema di Fermat; risoluzioni di congruenze lineari, teorema cinese dei resti; la funzione di Eulero.
Dominio di integrità dei polinomi in una indeterminata, a coefficienti in un campo: polinomi irriducibili, primi.
Spazi vettoriali su un campo, indipendenza lineare , Base, Cambiamento di base, matrici, determinanti, rango di una matrice; sistemi lineari, applicazioni leneari, applicazioni lineari e matrici; autovalori e autovettori di una matrice (endomorfismo), diagonalizzazione di uma matrice (endomorfismo), prodotto scalare , spazi vettoriali euclidei. Complementi ortogonali, Proiezioni Ortogonali, Processo di Gram-Schmidt.
Spazi affini euclidei: parallelismo, ortogonalità, angoli tra varietà lineari affini euclidee; coniche nel piano, equazione canonica di una conica.
Bibliografia Consigliata
L.A.Lomonaco, Un'introduzione all'algebra lineare, Aracne editori
S.Lipschutz-M.Lipson, Algebra Lineare, McGraw-Hill.
Dispense in rete.
Docenti
Anno accademico:
2012
Anno di corso:
1
Semestre:
2
Numero CFU:
9
SSD:
GEOMETRIA (MAT/03)
Ambito:
Formazione matematico-fisica
Ore di attivita frontale:
72 






