\[r(t) = r(0) e^{\alpha t} \]
\[\alpha = \frac{1}{\tau} \]
\[\tau = \frac{\ln(2)}{\beta} \]
\[\beta = \frac{\alpha}{\Delta} \]
\[\Delta = \frac{1}{\gamma} \]
\[\gamma = \frac{\alpha}{\Delta} \]
\[\alpha = \frac{1}{\Delta} \]
\[\Delta = \frac{1}{\gamma} \]
\[\gamma = \frac{\alpha}{\Delta} \]
39. Determine la velocidad del sonido en la presencia de temperaturas ambiente.

\[\frac{c}{\sqrt{\gamma}} = (a) \]

\[\frac{c}{\sqrt{\gamma}} = (b) \]

\[\frac{c}{\sqrt{\gamma}} = (c) \]

\[\frac{c}{\sqrt{\gamma}} = (d) \]

\[\frac{c}{\sqrt{\gamma}} = (e) \]

\[\frac{c}{\sqrt{\gamma}} = (f) \]

\[\frac{c}{\sqrt{\gamma}} = (g) \]

\[\frac{c}{\sqrt{\gamma}} = (h) \]

El problema anterior se resuelve tomando en cuenta que la velocidad del sonido está dada por:

\[c = \sqrt{\frac{\gamma R T}{M}} \]

Donde:
- \(c \) es la velocidad del sonido.
- \(\gamma \) es el coeficiente de expansión isótermo.
- \(R \) es la constante universal de los gases.
- \(T \) es la temperatura absoluta.
- \(M \) es la masa molar del gas.

Despejando la velocidad del sonido para obtener una expresión que incluya la temperatura ambiente, se obtiene:

\[\frac{c}{\sqrt{\gamma}} = \sqrt{\frac{\gamma R T}{M}} \]

Para determinar la corriente de la página de los problemas, se debe tener en cuenta que:

\[I = \frac{E}{r + R} \]

Donde:
- \(I \) es la corriente.
- \(E \) es la fuente de voltaje.
- \(r \) es la resistencia interna de la fuente.
- \(R \) es la resistencia externa.

Si la resistencia externa es igual a cero, la corriente es máxima y se da por:

\[I = \frac{E}{r} \]

En el caso de una fuente de corriente, la corriente es constante y se da por:

\[I = \text{constante} \]

La corriente variará con la resistencia externa según la ley de Ohm.

\[V = I R \]

Donde:
- \(V \) es la tensión.
- \(I \) es la corriente.
- \(R \) es la resistencia.

La tensión es la fuerza que actúa sobre los electrones, causando su movimiento. La resistencia es la oposición que un conductor ofrece a la corriente. La corriente es la razón con la que los electrones fluyen a través del conductor. La ley de Ohm establece que la tensión es directamente proporcional a la corriente y inversamente proporcional a la resistencia:

\[V = I R \]

Donde:
- \(V \) es la tensión.
- \(I \) es la corriente.
- \(R \) es la resistencia.
Ejercicio 3.1

1. Edad: 12 años
2. Nacionalidad: Mexicano
3. Estado civil: Soltero
4. Educación: Licenciado en Ciencias
5. Ocupación: Ingeniero Civil
6. Intereses: Viajar, Escuchar música, Leer
7. Destino preferido: Europa
8. Hobbies: Correr, Practicar yoga, Pintar
9. Talento especial: Interpretar la guitarra
10. Pase tiempo con: Familia, amigos

Ejercicio 3.2

1. Edad: 14 años
2. Nacionalidad: Peruano
3. Estado civil: Casado
4. Educación: Bachillerato en Ciencias
5. Ocupación: Asistente de Venta
6. Intereses: Lea, Escuchar música, Practicar deportes
7. Destino preferido: Sudamérica
8. Hobbies: Jugar fútbol, Practicar esquí
9. Talento especial: Cantar
10. Pase tiempo con: Familia, amigos

Ejercicio 3.3

1. Edad: 25 años
2. Nacionalidad: Uruguaya
3. Estado civil: casado
4. Educación: Maestro en Comunicación
5. Ocupación: Periodista
6. Intereses: Leer, Escuchar música, Practicar yoga
7. Destino preferido: Asia
8. Hobbies: Correr, Practicar yoga
9. Talento especial:tocar la guitarra
10. Pase tiempo con: Familia, amigos

Ejercicio 3.4

1. Edad: 30 años
2. Nacionalidad: Chileno
3. Estado civil: Soltero
4. Educación: Licenciado en Informática
5. Ocupación: Ingeniero en Informática
6. Intereses: Viajar, Practicar deportes, Leer
7. Destino preferido: Europa
8. Hobbies: Correr, Practicar yoga
9. Talento especial: Interpretar la guitarra
10. Pase tiempo con: Familia, amigos