Esame di Stato per l'abilitazione alla professione di Ingegnere

Il sessione 2014

Sez. A

I prova - Tema di carattere generale – settore Industriale

Il progresso industriale ha portato, negli ultimi 50 anni, a benefici sempre maggiori negli ambiti dell'ambiente, della salute e della sicurezza. Il candidato descriva quali problematiche sono state affrontate e con quali modalità, e quali sfide riserverà il futuro della produzione industriale.
I prova - Tema di carattere generale – settore Civile-Ambiente

Ai fini della realizzazione di un progetto nello specifico settore di competenza il candidato definisca, descriva e commenti le differenti fasi che precedono e contribuiscono alla realizzazione del progetto stesso, con riferimento ad aspetti come:
- la ricerca preliminare in merito al contesto di riferimento;
- la definizione di diverso grado di dettaglio del contenuto progettuale;
- l’individuazione, analisi e valutazione di aspetti di compatibilità ambientale e di sicurezza.
Esame di Stato per l'abilitazione alla professione di Ingegnere

II sessione 2014

Sez. A

I prova - Tema di carattere generale – settore Informazione

Nell'ambito della progettazione e realizzazione di sistemi di controllo, ovvero di acquisizione, elaborazione o trasmissione di informazioni, il candidato illustri e discuta criticamente le tecnologie elettroniche, informatiche o di telecomunicazione a lui note per risolvere le problematiche di integrazione di componenti o sistemi, sia hardware che software, eventualmente eterogenei fra loro, esemplificandone una particolare applicazione.
Esame di Stato per l'abilitazione alla professione di ingegnere

II sessione 2014

Sez. A

Il prova – settore civile-ambientale

Tema n.1 (Trasporti)

' masterplan aeroportuale e il dimensionamento delle piste di volo.

Tema n.2 (Edile)

Il candidato descriva l'iter da seguire nella realizzazione del progetto di un edificio residenziale di nuova costruzione, specificando anche i titoli abilitativi, gli strumenti di progettazione cui fare riferimento e definendo le diverse scale di rappresentazione utilizzate nei vari elaborati grafici ed i contenuti degli stessi.

Tema n.3 (Costruzioni idrauliche)

Il candidato descriva i provvedimenti con i quali è possibile attuare la protezione idraulica dei territori potenzialmente soggetti ad inondazioni. In particolare il candidato si soffermi sugli interventi di tipo strutturale, discutendone i benefici e l'impatto ambientale, oltre che gli aspetti idraulici ed idrologici da tenere in considerazione ed i criteri progettuali da utilizzare.

Tema n.4 (Strutture)

Il candidato illustri le metodologie di calcolo delle strutture in c.a. soggette a presso – flessione. Si descrivano in particolare i possibili metodi di predimensionamento, le ipotesi alla base della progettazione, nonché la metodologia di verifica prevista dalla normativa tecnica italiana vigente.
Esame di Stato per l'abilitazione alla professione di ingegnere

II sessione 2014

Sez. A

Il prova – settore informazione

Tema n.1 (Telecomunicazioni)

2015 è stato proclamato dall’UNESCO “Anno Internazionale della Luce”. L’anno internazionale delle luce è un’iniziativa globale che mira ad accrescere la consapevolezza di ciascuno di noi sul modo in cui le tecnologie basate sulla luce promuovono lo sviluppo sostenibile e forniscono soluzioni alle sfide globali ad esempio nei campi dell’energia, dell’istruzione, delle comunicazioni, della salute e dell’agricoltura. Il candidato illustri un esempio di impiego delle tecnologie della luce nel settore delle comunicazioni.

Tema n.2 (Informatica)

Il candidato discuta in modo critico e approfondito le metodologie a lui note nel campo della progettazione di architetture e/o sistemi distribuiti per l’elaborazione e la memorizzazione dell’informazione.

Tema n.3 (Elettronica)

I convertitori statici di potenza negli ultimi anni hanno contribuito in maniera consistente alla diffusione degli impianti da fonti rinnovabili.

Il candidato, fornendo preliminarmente una descrizione generale dei componenti di potenza impiegati come interruttori, scelga una tipologia di convertitore che può essere impiegato in questo tipo di impianti illustrandone il funzionamento. Successivamente ne metta in evidenza pregi, limiti ed eventualmente la specifica applicazione nei sistemi da fonti rinnovabili.
UNIVERSITÀ DEGLI STUDI DI PARMA

Esame di Stato per l'abilitazione alla professione di ingegnere

II sessione 2014

Sez. A

II prova – settore industriale

Tema n.1 (Ingegneria Economico-Gestionale)

Il candidato descriva e discuta le principali fasi del controllo direzionale (pianificazione strategica e budget) e gli strumenti operativi come centri di responsabilità e valutazione delle performance.

Tema n.2 (Impianti)

Il candidato dopo aver descritto gli attori, le funzioni aziendali, i flussi fisici, i flussi informativi ed i flussi economico/finanziari coinvolti in una supply chain, delinei i principali criteri progettuali necessari per la progettazione di una supply chain per il settore fashion. Come è possibile controllare/mitigare l'effetto bullwhip in questo settore?

Tema n.3 (Costruzione di Macchine)

Il candidato descriva i criteri di selezione di un materiale per la realizzazione di una condotta sottomarina, evidenziando le criticità dell'applicazione. Si illustrino infine i possibili metodi di saldatura e di controllo.

Tema n.4 (Macchine)

Il candidato descriva le principali caratteristiche ed applicazioni, anche evidenziandone le problematiche ambientali, delle macchine alternative a combustione interna.
PREMESSA

Il circuito rappresentato in figura viene impiegato per sintetizzare un bipolo non lineare, ovvero un bipolo che presenta una caratteristica I-V diversa da quella di un resistore. Tipicamente se ne distinguono due tipi:

1) N, con un tratto di I(V) a pendenza negativa e due a pendenza non negativa in cui la caratteristica, nei punti di inversione di pendenza, presenta due tangenti parallele all’asse della differenza di potenziale V;
2) S, con un tratto di I(V) a pendenza negativa e due a pendenza non negativa in cui la caratteristica, nei punti di inversione di pendenza, presenta due tangenti parallele all’asse della corrente I.

Si consideri il circuito perfettamente simmetrico e i MOSFET privi di effetti reattivi.

DATI

\[E = 3.3 \, \text{V} \]
\[I_0 = 4 \, \mu\text{A} \]
\[V_{Tn} = -V_{Tp} = 0.7 \, \text{V} \]
\[k_n = k_p = 10 \, \mu\text{A}/\text{V}^2 \]
\[\lambda_p = \lambda_n = 0 \]
ELABORATO DA SVOLGERE

1) Si determinino i valori delle tensioni V_{AO} e V_{BO} corrispondenti alla situazione di riposo del circuito in modo da avere $V = 0$ e $I = 0$. A tal fine, si osservi che, per simmetria, i transistor lavorano con $V_{GS} = V_{DS}$.

2) In corrispondenza del punto di riposo di cui sopra, si disegni il circuito equivalente ai piccoli segnali.

3) Considerando lo stesso punto di riposo, si calcoli il valore della transconduttanza $g_{m,p}$ dei transistor a canale p e della transconduttanza $g_{m,n}$ dei transistor a canale n.

4) Si determini l’espressione analitica ed il valore numerico della resistenza differenziale r vista ai morsetti A e B.

5) Sul piano I-V si tracci la retta di equazione $I = \frac{V}{r}$ e si determini il massimo valore di $|V|$ compatibile col funzionamento di tutti i transistor in saturazione. Si determini quindi la condizione di lavoro dei quattro transistor se $|V|$ supera di poco il limite suddetto. Allontanandosi da $|V| = 0$, si determini il valore di $|V|$ in corrispondenza del quale la caratteristica $I(V)$ diventa a pendenza nulla. Se $|V|$ aumenta rispetto a tale valore, quale pendenza ha la caratteristica $I(V)$?

Le precedenti determinazioni dovrebbero condurre a disegnare la caratteristica $I(V)$ approssimata e l’andamento qualitativo della stessa caratteristica senza l’approssimazione lineare a tratti.

6) Si esprima in funzione di V_{GS} e V_{DS} il valore della transconduttanza e della conduttanza di uscita dei MOSFET operanti in regione triodo.

7) Quanto varrà la resistenza differenziale del bipolo non lineare in una condizione in cui M_2 ed M_4 sono interdetti mentre M_3 ed M_1 sono in regione triodo?

8) La caratteristica I-V complessiva sarà di tipo S o N?

9) Come si potrebbero collegare al bipolo di cui sopra un induttore ed un condensatore per realizzare un oscillatore quasi sinusoidale?

10) Si dimensioni un generatore di corrente I_0 con uno specchio di corrente.
Eseguire il dimensionamento di una pompa volumetrica alternativa in grado di fornire una portata volumetrica media pari a 1200 L/h ed in grado di raggiungere pressioni alla mandata pari a 1000 bar. La velocità di rotazione dell’albero è pari a 1500 r/min.
Il candidato deve svolgere i seguenti compiti:
✓ fare un disegno della macchina che rappresenti: il tipo di pistone impiegato, la collocazione delle tenute il tipo di manovellismo ed il tipo di valvole;
✓ calcolare il diametro e la corsa di ogni pistone, progettare la macchina con più pistoni in modo da uniformare la portata alla mandata;
✓ calcolare la potenza assorbita dalla pompa, stimando il rendimento della macchina;
✓ calcolare la sezione di passaggio minima delle valvole di aspirazione dei cilindri in modo da garantire una pressione dell’acqua all’interno del cilindro almeno 10 volte superiore alla tensione del vapore considerando la temperatura dell’acqua pari a 25 °C; assumere la pressione nel collettore di aspirazione pari ad 1 bar assoluti.
Il candidato deve riportare in una tabella riassuntiva tutti i valori calcolati.
Un’azienda manifatturiera produce e distribuisce 6 modelli di stufe a pellet, denominati Mod1, Mod2, Mod3, Mod4, Mod5 e Mod6. La rete distributiva è costituita da 3 centri di distribuzione regionali caratterizzati da 4 punti vendita ciascuno i primi 2 e da 3 punti vendita il restante. L’azienda ha un solo sito produttivo.

I fabbisogni lordi mensili di ogni prodotto finito, sono caratterizzati dal seguente andamento:

✓ Vendite annuali (in pezzi):

<table>
<thead>
<tr>
<th>Mod</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod1</td>
<td>40</td>
</tr>
<tr>
<td>Mod2</td>
<td>52</td>
</tr>
<tr>
<td>Mod3</td>
<td>37</td>
</tr>
<tr>
<td>Mod4</td>
<td>32</td>
</tr>
<tr>
<td>Mod5</td>
<td>52</td>
</tr>
<tr>
<td>Mod6</td>
<td>13</td>
</tr>
</tbody>
</table>

✓ Distribuzione % vendite:

<table>
<thead>
<tr>
<th></th>
<th>Gen</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Mag</th>
<th>Lug</th>
<th>Ago</th>
<th>Set</th>
<th>Ott</th>
<th>Nov</th>
<th>Dic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10%</td>
<td>5%</td>
<td>2.5%</td>
<td>2.5%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>10%</td>
<td>20%</td>
<td>25%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Calcolare il DRP per tutti gli attori della rete di distribuzione deciando i valori dei parametri di calcolo del DRP (i.e. tempi di consegna, scorte iniziali, scorte di sicurezza, dimensione dei lotti, politiche di riordino, costo di preparazione dell’ordine, valore unitario della merce, tasso di interesse, ecc.).

Assicurarsi di utilizzare almeno un volta ciascuna delle seguenti politiche di riordino:

1. riordino su fabbisogno con scorta di sicurezza;
2. riordino POQ o periodo di copertura fisso;
3. riordino a lotti fissi;
4. riordino a lotti multipli con scorta di sicurezza;
5. riordino a lotti multipli del lotto economico (EOQ da calcolare) con scorta di sicurezza.

Una volta determinato il piano delle spedizioni dal sito produttivo, si calcoli l’MRP (Materials Requirements Planning) per il produttore utilizzando le seguenti indicazioni:

1. nello stabilimento produttivo sono fabbricate tutte le stufe;
2. disegnare le BOM di ogni stufa con almeno 3 livelli di profondità e 2 codici minimo per ogni livello; siano presenti almeno 2 codici comuni ad almeno 2 modelli di stufa in ogni BOM

Per lo sviluppo dell’MRP si utilizzi una politica a fabbisogno. Il candidato assuma, giustificando le scelte, ogni dato mancante.
Nella pressa a ginocchiera mostrata in figura si calcoli la forza \(F \) necessaria per sviluppare una spinta \(P \) pari a 100 ton. Si dimensionino poi i perni, facendo uno schizzo costruttivo degli stessi.
ESERCIZIO N. 1 (analisi di bilancio)
La Zucchini S.r.l. è un’impresa operante nel settore elettronico, che presenta i seguenti bilanci, relativi agli esercizi T1 e T2. Si proceda alla riclassificazione dei due prospetti ed alla costruzione degli indici della struttura finanziaria, della situazione finanziaria e della situazione economica dell’azienda. Si tenga conto delle informazioni seguenti:
- la voce Debiti verso banche comprende debiti con scadenza entro l’anno per 13.991 nel T1 e per 9.513 nel T2;
- i crediti hanno tutti scadenza entro l’anno.

STATO PATRIMONIALE CIVLISTICO

<table>
<thead>
<tr>
<th>ATTIVO</th>
<th>T1</th>
<th>T2</th>
<th>PASSIVO</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Patrimonio netto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immobilizzazioni immateriali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costi d’impianto e d’ampliamento</td>
<td>1.800</td>
<td>800</td>
<td>Capitale sociale</td>
<td>15.000</td>
<td>18.402</td>
</tr>
<tr>
<td>Totale</td>
<td>1.800</td>
<td>800</td>
<td>Riserva legale</td>
<td>2.400</td>
<td>2.400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Altre riserve</td>
<td>1.058</td>
<td>1.058</td>
</tr>
<tr>
<td>Immobilizzazioni materiali</td>
<td></td>
<td></td>
<td>Utile d’esercizio</td>
<td>3.000</td>
<td>3.900</td>
</tr>
<tr>
<td>Attrezzature</td>
<td>8.517</td>
<td>8.710</td>
<td>Totale</td>
<td>21.458</td>
<td>25.760</td>
</tr>
<tr>
<td>Mobili d’ufficio</td>
<td>5.290</td>
<td>3.340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>13.807</td>
<td>12.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immobilizzazioni finanziarie</td>
<td></td>
<td></td>
<td>TFR</td>
<td>15.553</td>
<td>19.120</td>
</tr>
<tr>
<td>Partecipazioni</td>
<td>542</td>
<td>442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>542</td>
<td>442</td>
<td>Debiti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale Immobilizzazioni</td>
<td>16.149</td>
<td>13.292</td>
<td>Verso banche</td>
<td>36.400</td>
<td>23.273</td>
</tr>
<tr>
<td>Rimanenze</td>
<td>49.930</td>
<td>45.047</td>
<td>Verso fornitori</td>
<td>21.583</td>
<td>19.699</td>
</tr>
<tr>
<td>Totale</td>
<td>49.930</td>
<td>45.047</td>
<td>Tributari</td>
<td>8.200</td>
<td>6.810</td>
</tr>
<tr>
<td>Altri debiti</td>
<td>5.180</td>
<td>4.780</td>
<td>Totale</td>
<td>71.363</td>
<td>54.562</td>
</tr>
<tr>
<td>Crediti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verso clienti</td>
<td>28.560</td>
<td>29.870</td>
<td>Ratei e risconti passivi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verso altri</td>
<td>5.440</td>
<td>3.800</td>
<td>Ratei passivi</td>
<td>305</td>
<td>407</td>
</tr>
<tr>
<td>Totale</td>
<td>34.000</td>
<td>33.670</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disponibilità liquide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depositi bancari</td>
<td>6.700</td>
<td>7.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassa</td>
<td>1.200</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>7.900</td>
<td>7.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale circolante</td>
<td>91.830</td>
<td>86.217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratei e risconti attivi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratei attivi</td>
<td>700</td>
<td>340</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTO ECONOMICO CIVILISTICO

<table>
<thead>
<tr>
<th>RICAVI DI VENDITA (A)</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>89.442</td>
<td>93.892</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COSTI (B)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>per servizi</td>
<td>38.980</td>
<td>39.500</td>
</tr>
<tr>
<td>salari e stipendi</td>
<td>21.202</td>
<td>22.500</td>
</tr>
<tr>
<td>oneri sociali</td>
<td>8.930</td>
<td>9.302</td>
</tr>
<tr>
<td>TFR</td>
<td>3.780</td>
<td>4.720</td>
</tr>
<tr>
<td>ammortamenti immateriali</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ammortamenti immateriali</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>svalutazione crediti</td>
<td>5.000</td>
<td>6.000</td>
</tr>
<tr>
<td>oneri diversi</td>
<td>1.000</td>
<td>1.500</td>
</tr>
<tr>
<td>Totale</td>
<td>79.492</td>
<td>84.322</td>
</tr>
</tbody>
</table>

| Differenza (A – B) | 9.950 | 9.570 |

<table>
<thead>
<tr>
<th>PROVENTI ED ONERI FINANZIARI</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>interessi attivi su c/c</td>
<td>1.100</td>
<td>560</td>
</tr>
<tr>
<td>svalutazione partecipazioni</td>
<td>0</td>
<td>(100)</td>
</tr>
<tr>
<td>Totale</td>
<td>1.100</td>
<td>460</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROVENTI ED ONERI STRAORDINARI</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proventi straordinari</td>
<td>610</td>
<td>880</td>
</tr>
<tr>
<td>oneri straordinari</td>
<td>(460)</td>
<td>(200)</td>
</tr>
<tr>
<td>Totale</td>
<td>150</td>
<td>680</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RISULTATO PRIMA DELLE IMPOSTE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Imposte sul reddito</td>
<td>8.200</td>
<td>6.610</td>
</tr>
<tr>
<td>UTILE D’ESERCIZIO</td>
<td>3.000</td>
<td>3.900</td>
</tr>
</tbody>
</table>

ESERCIZIO N. 2 (budget)

L’impresa Panetti srl produce due prodotti (Rosso e Verde) utilizzando le materie prime S e U e un componente (L). Il componente L può essere prodotto internamente utilizzando un impianto dedicato con capacità produttiva massima pari a 10.000 h/anno. Il tempo di produzione unitario di L è pari a 6 minuti. La quota di ammortamento di tale impianto è di 20.000€ all’anno. Per la produzione di L la Yellowstone utilizza lavoro diretto pagato a cottimo del costo di 30 €/ora, materie prime del costo di 0,2 €/unità, ed energie pagata 0,15 €/unità. L’impresa Panetti sta terminando di redigere alcuni documenti di budget per l’anno 2015. I dati di cui dispone sono i seguenti:

- consumi standard delle materie prime:

<table>
<thead>
<tr>
<th>Prodotto</th>
<th>Materia S (kg/unità)</th>
<th>Materia U (kg/unità)</th>
<th>Componente L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosso</td>
<td>0,15</td>
<td>0,45</td>
<td>2</td>
</tr>
<tr>
<td>Verde</td>
<td>0,75</td>
<td>0,75</td>
<td>3</td>
</tr>
</tbody>
</table>

- prezzi standard delle materie prime: materia S 8 €/kg, materia U 12 €/kg, costo di acquisto di L (nel caso in cui l’impresa decida di acquistare alcuni di questi componenti all’esterno) 3 €/unità;
- valori stimati di produzione: prodotto Rosso 15.000 unità, prodotto Verde 22.000 unità;
- prezzi stimati di vendita: 25 €/unità per Rosso e 40 €/unità per Verde;
- situazione dei magazzini:

<table>
<thead>
<tr>
<th></th>
<th>Scorte iniziali previste</th>
<th>Scorte finali desiderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosso</td>
<td>1.000</td>
<td>1.500</td>
</tr>
<tr>
<td>Verde</td>
<td>2.500</td>
<td>2.200</td>
</tr>
<tr>
<td>S</td>
<td>750</td>
<td>1.500</td>
</tr>
<tr>
<td>U</td>
<td>2.250</td>
<td>1.500</td>
</tr>
<tr>
<td>L</td>
<td>1.800</td>
<td>300</td>
</tr>
</tbody>
</table>

Si sa inoltre che la Panetti utilizza per la produzione di Rosso ed Verde impianti il cui ammortamento annuo è pari a 100.000 €/anno, impiega 10 operai (non licenziabili) pagati ognuno 25.000 € all’anno, e sostiene spese per l’energia (totalmente variabili) pari a 3 €/unità per Rosso e 3,5 €/unità per Verde.

1. Calcolare se alla Panetti convenga realizzare in casa il componente L o acquistarlo all’esterno;
2. Sulla base dei dati forniti preparare il budget delle vendite e del fatturato, il budget dei costi di produzione ed il budget degli approvvigionamenti dell’impresa Panetti nel 2015.
3. Supponendo per semplicità che il componente L sia acquistato all’esterno, e utilizzando gli altri dati disponibili determinare la quantità di break-even nel caso in cui il mix di produzione sia quello previsto e che non ci sia alcuna variazione delle scorte;
4. Calcolare lo scostamento di volume e gli scostamenti di prezzo e impiego relativamente alle materie prime S, U ed L per il solo prodotto Rosso conoscendo i seguenti dati a consuntivo:
 - volume effettivo di produzione di Rosso 15.100 unità;
 - prezzo effettivo della materia S 8,20 €/kg;
 - costo complessivo per l’acquisto di S per Rosso 20.549,2 €;
 - prezzo effettivo della materia U 11,80 €/kg;
 - quantità effettiva di U utilizzata per Rosso 6.800 kg;
 - prezzo effettivo di acquisto di L 3 €/unità;
 - quantità totale di L effettivamente utilizzata per Rosso 30.400 unità.
5. Se il componente L non viene prodotto in casa l’impianto viene venduto.

ESERCIZIO N. 3 (decisioni operative)
La Tetris è un’impresa che produce, tra l’altro, gioielli di bigiotteria. Possiede tre linee di prodotti: Brian, un bracciale; Ed, una collana; Wimble, collana etnica di grandi dimensioni. Per il 2015 la Tetris ha stimato di poter vendere 50.000 Brian, 30.000 Ed e 20.000 Wimble a dei prezzi unitari rispettivamente di 15 €, 18 € e 25 €. Le quantità di materie prime necessarie per i diversi tipi di prodotto sono quelle riportate in tabella:

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Brian</th>
<th>Ed</th>
<th>Wimble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastica</td>
<td>20 g</td>
<td>15 g</td>
<td>50 g</td>
</tr>
<tr>
<td>Filo speciale</td>
<td>20 g</td>
<td>20 g</td>
<td>30 g</td>
</tr>
<tr>
<td>Vetro</td>
<td>10 g</td>
<td>10 g</td>
<td>10 g</td>
</tr>
<tr>
<td>Perline</td>
<td>-</td>
<td>15 g</td>
<td>-</td>
</tr>
<tr>
<td>Legno pregato</td>
<td>-</td>
<td>-</td>
<td>10 g</td>
</tr>
</tbody>
</table>

I costi delle materie prime impiegate sono i seguenti:
- Plastica: 5 €/kg;
- Filo speciale: 8 €/kg;
- Vetro: 5 €/kg;
- Perline: 10 €/kg;
- Legno pregato: 25 €/kg.

Dieci operai diretti specializzati (ognuno dei quali lavora 200 giorni all’anno per 8 ore al giorno) del costo unitario di 30.000 €/anno si dedicano esclusivamente alla produzione della bigiotteria, mentre 2 operai indiretti (costo 40.000 €/anno) svolgono il ruolo di supervisori di tutte le linee produttive della Tetris (che oltre alla bigiotteria realizza molti altri prodotti).

L’ammortamento dei macchinari di produzione della bigiotteria è pari a 300.000 € l’anno. La Tetris ha stipulato con l’ENEL un contratto che prevede il pagamento di una quota annua di 150.000 € per l’allacciamento dell’impianto di produzione di bigiotteria alla rete elettrica più il pagamento di 36 € per ora macchina utilizzata per la produzione.

Le spese amministrative e di vendita sostenute dalla Tetris sono pari a 150.000 € (dici 90.000 € fissi e 60.000 € variabili in funzione del numero complessivo di unità vendute e calcolati sul volume di produzione previsto).

Sapendo che:
- non è ammesso il ricorso al lavoro straordinario;
- gli operai diretti (ma non quelli indiretti) possono essere messi in cassa integrazione;
- gli operai indiretti dedicano il 30% del loro tempo alla linea produttiva della bigiotteria;
- il tempo macchina (coincidente con il tempo uomo) necessario per realizzare Brian, Ed e Wimble è pari rispettivamente a 8 minuti/unità, 10 minuti/unità e 13 minuti/unità;
1. stabilire se la Tetris è in grado di produrre le quantità previste e se questo è conveniente dal punto di vista economico;

2. supponendo che un guasto al macchinario renda indisponibile l'impianto per sei mesi stabilire quale parte della produzione la Tetris dovrebbe eliminare per il 2015.