Event description
Abstract: In the context of the Boltzmann equation, functional inequalities relating entropy dissipation and relative entropy to equilibrium are fundamental to obtaining explicit rates of relaxation to equilibrium.
In this talk, I present a method of transfer of inequalities, which establishes an (almost) equivalence, regarding entropy inequalities, between the classical and the fermionic Boltzmann cases. We thus obtain a large class of such inequalities in the fermionic case, and therefore, quantitative relaxation rates towards equilibrium for solutions to the (homogeneous cut-off hard potentials) Boltzmann-Fermi-Dirac equation.