Alma universitas studiorum parmensis A.D. 962 - Università di Parma
EUGreen - European University Alliance for sustainability

Event description

We consider solutions to critical and sub-critical semilinear elliptic equations on complete, noncompact Riemannian manifolds and study their classification as well as the effect of their presence on the underlying manifold. When the Ricci curvature is non-negative, we prove both the classification of positive solutions to the critical equation and the rigidity for the ambient manifold. The same results are established for solutions to the Liouville equation on Riemannian surfaces. Our results are obtained via an appropriate P-function whose constancy implies the classification of both the solutions and the underlying manifold. The analysis carried out on the P-function also makes it possible to classify non-negative solutions for subcritical equations on manifolds enjoying a Sobolev inequality and satisfying an integrability condition on the negative part of the Ricci curvature. This is a joint work with Alberto Farina e Camilla Chiara Polvara.

Relatori/Relatrici

Giulio Ciraolo
Università degli Studi di Milano

Modalità di accesso

In presenza: Ingresso libero fino esaurimento posti

Fa parte di

AnaGrAM - Un progetto finanziato dalla Fondazione Cariparma
Campus - Plesso di Matematica
Ingresso libero fino esaurimento posti
Modificato il